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SOLUTION OF THE FIRST A N D  SECOND 
BOUNDARY-VALUE PROBLEMS OF NONSTATIONARY 
HEAT CONDUCTION FOR A TRIANGULAR R E G I O N  

A. D. Chernyshov and O. P. Reztsov UDC 536 

Exact solutions of  nonstationary problems of  heat conduction are constructed in explicit form for  a 
regular triangle of  height h with Dirichlet and Neumann "s boundary conditions and an arbitrary initial 
condition having the property o f  triple symmetry in the region of the triangle. These very solutions 
remain valid also for  the region of  a rectangular triangle with an acute angle re~6, when there are no 
heat fluxes on the hypotenuse and smaller side, whereas Dirichlet or Neumann boundary conditions 
are prescribed on the larger side. Here, symmetry limitations are not imposed on the initial conditions. 

1. The Dirichlet Problem for the Region f2 of a Regular  Triangle.  In [ 1 ] many exact solutions are 
given for nonstationary problems of heat conduction with different boundary conditions. For the region of  a 
regular triangle a particular exact solution was obtained in [2] for the Dirichlet problem 

Ut=a2AU + p (t) , (1.1) 

Ulr_. 0 =f(x ,  y ) ,  UIr=/a (t), (1.2) 

where F is the boundary of the region ~ .  
This solution has the form 

t 

W l = It (t) + E An tP2nT2n + I El (t - "r, 91, 92) [P (Z) - ~t ('t;)] dz" 
n=l 0 

7~n 
n=-I 

( a i r y  . 

cp,, = sin rtn~l + sin rmge+ sin TCn~3 ; (1.3) 

~ i = ( r - r i ) n / h ,  i= 1, 2, 3 ,  

where r is the radius vector of an arbitrary point with coordinates (x, y) in the region ~,  ri is the radius vector 
of the apices of the triangle [2, and n i are the unit normals to the sides of the triangle directed into ~ and 

having the property 

- -  1 
nln 2 = nln 3 = n2n 3 = - ~ .  (1.4) 

The three dimensionless variables ~i are interconnected by one equality: 

Voronezh State Technological Academy, Voronezh, Russia. Translated from Inzhenerno-Fizicheskii 
Zhumal, Vol. 73, No. 5, pp. 911-917, September-October, 2000. Original article submitted June 14, 1999. 

894 1062-0125/00/7305-0894525.00 02000 Kluwer Academic/Plenum Publishers 



~1+~2+~3=  1 ; 0 < ~ i < 1 .  (1.5) 

The region ~ in the variables (~l, ~2) passes over into the region t21 of the regular triangle, the equa- 
tions of the sides of which have the form 

~1=0, ~2=0, ~1+~2= 1. 

The coefficients An are determined from the integrals 

eL!; L!23 An ( f (  ,y*)-p(O))tP2ndS, I ItP2ndS= -~" 

The function El(t, ~l, ~2) from (1.3) satisfies the homogeneous heat-conduction equation (1.1) at p(t) = 
0, Dirichlet's homogeneous boundary conditions, and the single initial condition 

E I I F = 0 ;  Ell t=o= 1 . (1.7) 

In constructing the solution Wl from (1.3), use is made of an incomplete orthogonal system of func- 
tions {~02v}. Therefore, the solution Wl is valid only for particular forms of initial conditions that admit expan- 
sion in terms of the base {~Pn} with the expansion coefficients A,, from (1.6). To eliminate this drawback, we 
will introduce yet another system of  the functions {~n}: 

With the aid of the base {~,} we will construct the auxiliary function V: 

V= E O2n-I ~l/2n-ITzn-I ; (1.9) 
n=l 

where Bn are as yet arbitrary constant coefficients. 
From (1.9) and (1.10) we obtain that V satisfies the homogeneous equation (1.1) at p(t) = 0 and also 

the following initial and boundary conditions: 

Vlt=o= E n"~12n-I ; V[F----" Z nnT2n-l" (1.11) 
n=l n=l 

Using (1.5), we can show that all the functions ~2n-1 at the boundary F reduce to unity. 
It should be noted that even numbers 2n were used in the functions tp2,, and odd numbers ( 2 n -  1) in 

~2,,-1. If in (1.3) one uses the odd numbers (2n - 1) at the sines or the even numbers 2n at the cosines in (1.8), 
then in both cases we will have functions such that at the boundary F will depend on the coordinates of the 
points of the boundary F; however, this will not allow one to obtain useful solutions. The fact that 1~/2n_ l from 
(1.8) at the boundary F does not vanish also creates difficulties, but they can be overcome with the aid of the 
already obtained particular solution E1 from (1.3). 

By analogy with the form of  the function W 1 from (1.3) the solution of problem (1.1)-(1.2) will be 
represented in the form 
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oo 

U l = ~ (t) + Z [OnT2n-I (t)  (l~l/2n_l -- 1) +A n (P2nT2n (/)]  + 

n=l 

+ I El ( t -  "1:, ~1, 92) (t) - ~t ('C) + Z BnT2n-I ('0 d ' c .  

0 tr=-I 

(1.12) 

It can easily be seen from direct verification that this solution of (1.12) satisfies Eq. (1.1) and boundary 
conditions from (1.2). Fulfilling the initial condition in (1.2), we arrive at the equation 

£ [B n (\l/2n_ l --  1) + A n ~ 2 n ]  =f (x ,  y) - p  (0). (1.13) 

I1 = l 

The functions ~n and %, by definition in (1.3) and (1.8) are symmetric about the variables 91, 92, and 
93, i.e., with change of  the variables 91, ~2, and 93 the form of the functions q~2,, and ~2,,-1 does not change. 
This property of symmetry in the variable 91, 92, and 93 will be called triple symmetry. Thus, the left-hand 
side of equality (1.13) possesses a triple symmetry in the variables 91, 92, and 93; therefore, the initial condi- 
tion f ix,  y) must also have this property. Hence it follows that the proposed solution Ul in (1.12) is applicable 
for the initial conditions fix, y) with triple symmetry. Then equality (1.13) can be considered as an expansion 
of the function f ix,  y) - B(0) in terms of the functional base {~P2-n} + {~g2,,-I }. 

We do not investigate the problem of completeness of the functional base consisting of  two parts, 
{{P2n} and {~g2nq}. It is clear that this base considerably expands the possibilities of the method considered in 
comparison with the base {~n}. The functions {q>2_~} are orthogonal to each other in the region f2 l, just as 
~2,,-1 [3], but ~2n and ~2n-l are not orthogonai to each other and, moreover, 

~! ~ I I  ~ 3 
~;_,,dS = V~_~dS  =-~ ; 

~! {P~ndS_ 3 . [ [  ~2m_ld S =  6 . 
- 2nn ' U~ (2m --  1) 2 2 ' (1.14) 

~! 6n 
~2n ~2m-1 KS -- 

rt (4n 2 - (2m - 1) 2) 

where ~21 is the region of  the regular triangle in coordinates (91, 92) with sides 91 = 0, 92 = 0, and ~1 + ~2 = h. 
To find the generalized Fourier coefficients An and Bn, the left- and right-hand sides of  equality (1.13) 

must successively be multiplied by qrZm and ~2,,,-1 and then be integrated over the region f21. As a result, with 
the aid of (1.14) we come to a linear system for A m and Bin: 

oo eo 
3 " 6 6rtnA n -- g2Sm . 
-4 ~-nm ( 2 m  - 1) 2 Z Bn + Z 4n 2 _ (2m - 1) 2 

n=l n=l 

(1.15) 
Z Bm 3 ( 2 m - 1 )  2 3~ 

~ + - -  A n = rcN n , 
m=l 2n (4n- - (2m - 1)-) 4 

m , n ~  N .  

t t  I ' t  
S m = j j  [ f (x ,  y) - B(0)] Vz,,,_ldS ; N n = JJ [ f (x ,  y) - g(0)] ~2ndS. (1.16) 
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System (1.15) contains an infinite number of unknowns and equations, and this creates certain difficul- 

ties in its solution. Therefore, in all of the sums of solutions of (1.12) and of system (1.15) we must restrict 
ourselves to a certain finite number of terms No which is determined from a numerical experiment from the 
requirement of  the necessary exactness of solution (1.12). Then system (1.15) transforms to a finite system of 

2N0 equations for 2N0 of the unknowns An and Bn, where n = 1, 2 . . . . .  No. 
To simplify the obtaining of solution from the second equation of system (1.15), we can express An in 

terms of the coefficients Bin. Substituting this expression into the first equation in (1.15), we will have a closed 
system for Bm whose determinant is not equal to zero and, therefore, the determinant of  the entire system 
(1.15) is also not equal to zero. Thus, we obtaio the solution of system (1.15). 

As a particular verification, we consider a simple example, where ~t(t) = 0 and fix, y) = 1. In this case, 

the following equalities must hold: 

2 
W l = E l ;  B m = 0  ; A m -  ; S m = N m = l .  (1.17) 

ltrn 

Under conditions (1.17), the second equation in (1.15) is satisfied identically, and from the first equa- 

tion we have 

12 o - n - ;  m : l , 2  . . . . .  (1.18) 
~'~ 4n 2 - (2m - l)- 
n=l  

The proof of the convergence of series (1.18) is absent in the literature; therefore, we will perform the 

following calculations. We will extend the function ( ~ - ) ,  where 0 < x < 1, by the segment -1  < x < 0 once in 

an odd and then in an even manner. Next, over the segment 0 < x < 1 we will have the following two Fourier 

series for the same function: 

- - _  - - :  cos (2n - 1) l x E sin2nnx 2 2 

4 2 2rcn rt (2n - 1)2 
n =  1 n =  l 

(1.19) 

Multiplying both sums of the second equality in (1.19) by cos ( 2 m -  l)nx and integrating in the limits 

from 0 to 1, we obtain the proof of the validity of equality (1.18). 
2. Solution of Neumann ' s  Problem. For Eq. (1.1), the boundary conditions are written in the form 

b~tu[ =v 0 (t), 
F 

(2.1) 

where n is the inner normal to the boundary F of the region ~ .  
To construct the solution of problem (1.1) and (2.1), we will need the functions ¢P~_,-1 and Ig2n defined 

in (1.3) and (1.8). These functions have the following properties: 

On r 
= 0 ,  

b(D2n_ 1 /t (2n - 1) 

On h 
F 

(2.2) 

From the definition of the variables ~i in (1.3) we have ~i -- ni/h and therefore 

grad (~1 + ~2 + ~.~) = 2 (~lnl + ~2n2 + ~3n3)/h ; 
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"~ "~ "~ - - 2  - - "  - - '  6 
A (~l + ~2 + ~3) = 2 (n 1 + n f  + n 3) = ~ ; 

/l- 
(2.3) 

a_({~ +~ + ~3) ] F = n3 grad ( ~  +~2 + ~3) ] {,=o = 
a?Z " - 

1 1 =-g({~ +~2) 1{3_-0=-g. 

Taking into account the properties (2.3) for the quadratic sum ({~ + {2 + {.~), we introduce the auxiliary 
function V0 in the following way: 

Vo = (~:, + ~ + £)- * + ~:' 
2 h 2 " 

From Eq. (2.3) it follows that V0 is the solution of the problem 

, aV0[ _ 1 
a-AV° = V°t" an [ r - - - h "  (2.4) 

Thus, the function V0 satisfies the homogeneous equation (1.1) and boundary condition (2.4). 
We will also need the following Fourier series: 

= cos 2rtnx 
1 - - X - - X 2  Z ~'~ ' 
6 rt-n- 

n =  1 

sin (2n - 1) rLx l ( x - x 2 )  = 2 y_~ . . . . . .  
4 / . 3  ( 2 n -  1 )  3 " 

n = l  

(2.5) 

Replacing x by ~t/h, ~2/h, and ~3/h in (2.5) and taking into account (1.5), we have two auxiliary 
equalities in the series 

oo 

1 ~2~ 1 8(p___2_._1 
(~ +~ + ~ ) - 2  = Y-" ~'--%-:-2- Z ,  (2n-l) 3' 

n =  1 n =  1 

(2.6) 

~ 1 6_~ a2 t 
< = E + + rtn 2 h- 

11=1 

(2.7) 

Using the properties (2.2) and (2.4) of the functions 1t/2n and V0 and also equality (2.6), we can show 
that E2 is the solution of the following problem: 

E2t=a-AE2; E21 '=°=0;  On Iv h (2.8) 

In the construction of the solution of problem (1.1) and (2.1), the function E 2 plays the same role as 
the function E1 in constructing the solution of the first boundary-value problem in (1.12). 
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Omitting the intermediate calculations, as in (1.12), we represent the solution U 2 of the second bound- 
ary-value problem in the form 

t t 

U2= S E2 ( t -  x, ~,, ~2) v,t (1:) d'l: + ~ p ( x )  d"c + 
0 0 

o o  

+ Z Bn~12nTzn + Z An~P2n-lTen-1- 
n=l  n=l 

(2.9) 

[~-7~ ~ ~ 1 6 t] - v  l(0) _ ( ~ + ~ g + ~ 3 ) - 2  +h-2 a2 ' 

v l ( t ) = h v o ( t ) - T t Z ( 2 n - l ) a n T z n _ l ;  v l ( 0 ) = h v 0 ( 0 ) - r c ~ ( 2 n - l ) A  n. 
n=l n=l 

By its structure U2 from (2.9) satisfies the inhomogeneous equation (1.1) and boundary conditions 
(2.1). Satisfying the initial condition from (1.2), we obtain the equation 

Z Bn~-n + Z An CP2n-1 + rC Z (2n - 1) A n - hv o (0) x 
n=l n=l  L n=l 

x + + '--1 
. 2 j = f ( x , Y ) .  (2.10) 

The functional base {g~'-n-z} is orthogonal in the region ~1, just as the b~se {~Zn}, but ~PZn-1 and ~2n 
are not orthogonal to each other and, moreover, 

~! z 3 
~2ndS = -~ ; S! ~lt2ndS = 0 ; 

~ ~ 3 12 ~f 3 
(P2n-I dS = -- + 2 ~ ; ~Pon-I d S  = 

~ 4 ( 2 n -  1)" ta~ - rc ( 2 n -  1) 

~! (P2n-1 ~ql2mdS- 3 (2n - 1) 
rc [(2n - 1 )2 _ 4rn z] ; (2.11) 

• (P2n-1 ~P2m-t dS  = 0 ; JJ ~l/2n ~12mdS = O, m ~ n .  
Pt" 

Just as with the solution of the first boundary-value problem, to obtain a linear system for An and Bn, 
we multiply the left- and right-hand sides of  (2.10) in succession by ~02m_l and ~2m- 

It should be noted that in multiplying (2.10) by ~f2m for greater convenience it is necessary to use 
expression (2.6) in terms of the functions ~2n, while in multiplying (2.10) by q~_m-I this very expression must 
be used in terms of the functions (PZn-1. As a result, using (2.11), we have the following linear system for An 
and Bn: 
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¢ o  

4 (2n - 1) A n 
Bin+ Z 

rt [(2n - 1)2 _ 4m 2] 
n=l ]4 

+ rt (2n - 1) A n - hv 0 (0) = N,n ; 

o o  

Z [(2--~_ -1 )-'-~ --'4 .] + Am + n=l /1~ + II: 2 (2m-- 1) 2. (2.12) 

+ ~ ( 2 n - l ) A  n - h v  0(0) 2 r t ( 2 m - l )  

{4 -/1' 8 1 4 = 3  
3 (2m - 1) 3 + 2 (2m - 1)- Sm ; 

Nm = 7 fV2mdS ; S m  = 7 fiP2m-ldS " 

The solution of  the system in (2.12) can be found, if in all the sums of expressions (2.9), (2.10), and 
(2.12) we restrict ourselves to the finite number of the terms No which depends on the required accuracy of  
calculations. Then from (2.12) we have 2N0 equations for A m and B,,, ~vhere m = 1, 2 . . . . .  N 0. 

In conclusion, it should be noted that due to the triple symmetry the obtained solutions of the first and 
second boundary-value problems of heat conduction (1.12) and (1.9) are simultaneously the solution of the cor- 
responding problems also for the region of a regular triangle with sides h/3 and h/~3 - and hypotenuse 2h/3,  
with the boundary conditions of  heat insulation being set on the smaller side and hypotenuse and the Dirichlet 
or Neumann conditions on the larger side. 

N O T A T I O N  

h, height of the regular triangle; ~i, dimensionless variables; ~t(t), p(t), and Vo(T), functions; An and Bn, 
generalized Fourier coefficients; Wl, El, Tj, V, Sin, and Nn, auxiliary functions; {~0n, ~n}, functional base. 
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